
Journal of Geometry and Physics 57 (2007) 1421–1433
www.elsevier.com/locate/jgp

Homogeneous geodesics in homogeneous Finsler spaces

Dariush Latifi∗

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Ave., 15914 Tehran, Iran

Received 24 September 2006; received in revised form 13 November 2006; accepted 25 November 2006
Available online 2 January 2007

Abstract

In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes
geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the
one-parameter subgroups. The existence of infinitely many homogeneous geodesics on the compact semi-simple Lie group is
established. We introduce the notion of a naturally reductive homogeneous Finsler space. As a special case, we study homogeneous
geodesics in homogeneous Randers spaces. Finally, we study some curvature properties of homogeneous geodesics. In particular,
we prove that the S-curvature vanishes along the homogeneous geodesics.
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1. Introduction

A connected Riemannian manifold (M, g) is said to be homogeneous if a connected group of isometries G acts
transitively on it. Such an M can be identified with ( G

H , g), where H is the isotropy group at a fixed point o of M . The
Lie algebra g of G admits a reductive decomposition g = m ⊕ h, where m ⊂ g is a subspace of g isomorphic to the
tangent space To M and h is the Lie algebra of H [6]. In general, such a decomposition is not unique. A homogeneous
geodesic through the origin o ∈ M =

G
H is a geodesic γ (t) which is an orbit of a one-parameter subgroup of G, that

is

γ (t) = exp(t Z)(o), t ∈ R

where Z is a non-zero vector of g.
Homogeneous geodesics have important applications to mechanics. For example, the equation of motion of many

systems of classical mechanics reduces to the geodesic equation in an appropriate Riemannian manifold M .
Geodesics of left-invariant Riemannian metrics on Lie groups were studied by Arnold, extending Euler’s theory

of rigid-body motion [1]. A major part of Arnold’s paper is devoted to the study of homogeneous geodesics.
Homogeneous geodesics are called by Arnold “relative equilibriums”. The description of such relative equilibria
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is important for qualitative description of the behaviour of the corresponding mechanical system with symmetries.
There is a big literature in mechanics devoted to the investigation of relative equilibria. Studying the set of
homogeneous geodesics of a homogeneous Riemannian manifold ( G

H , g), the concept of the geodesic vector proved
to be convenient [8]. A non-zero vector X ∈ g is called a geodesic vector if the curve γ (t) = exp(t Z)(o) is a geodesic

on ( G
H , g). The following lemma can be found in [8].

Lemma 1.1. A vector X ∈ g − {0} is a geodesic vector if and only if

〈[X, Y ]m, Xm〉 = 0 ∀Y ∈ m,

where 〈, 〉 is the Ad(H)-invariant scalar product on m induced by the Riemannian scalar product on To M and the
subscript m indicates the projection into m. The study of the set of homogeneous geodesics of a homogeneous
Riemannian manifold is obviously reducible to the study of the set of its geodesic vectors.

A Finsler metric on a manifold is a family of Minkowski norms on tangent spaces. There are several notions of
curvature in Finsler geometry. The flag curvature K is an analogue of the sectional curvature in Riemannian geometry.
The Cartan torsion C is a primary quantity which characterizes Riemannian metrics among Finsler metrics. There is
another quantity which also characterizes Riemannian metrics among Finsler metrics, that is the so-called distortion
τ . The horizontal derivative of τ along geodesics is the so-called S-curvature S = τ;k yk . While many works have
been done on the general geometric properties of Finsler geometry, such as connections, geodesics and curvature,
only very little attention has been paid to the group aspects of this interesting field. This may be mainly due to the
Myers–Steenrod theorem in Riemannian geometry not being successfully generalized to the Finslerian case for a
rather long period. A proof of this theorem for the Finslerian case was given in [13,3]. Namely they proved that the
group of isometries of a Finsler space is a Lie transformation group of the underlying manifold. This result opens a
door to using Lie group theory to study Finsler geometry [4,9].

The purpose of the present paper is to study homogeneous geodesics in homogeneous Finsler spaces. The definition
of homogeneous geodesics is similar to that in the Riemannian case.

2. Preliminaries

2.1. Finsler spaces

In this section, we recall briefly some known facts about Finsler spaces. For details, see [2].
Let M be a n-dimensional C∞ manifold and T M =

⋃
x∈M Tx M the tangent bundle. If the continuous function

F : T M −→ R+ satisfies the condition that it is C∞ on T M \ {0}; F(tu) = t F(u) for all t ≥ 0 and u ∈ T M , i.e., F
is positively homogeneous of degree one; and for any tangent vector y ∈ Tx M \ {0}, the following bilinear symmetric
form gy : Tx M × Tx M −→ R is positive definite:

gy(u, v) =
1
2

∂2

∂s∂t
[F2(x, y + su + tv)]|s=t=0,

then we say that (M, F) is a Finsler manifold.
Let

gi j (x, y) =

(
1
2

F2
)

yi y j
(x, y).

By the homogeneity of F , we have

gy(u, v) = gi j (x, y)uiv j , F(x, y) =

√
gi j (x, y)yi y j .

Let γ : [0, r ] −→ M be a piecewise C∞ curve. Its integral length is defined as

L(γ ) =

∫ r

0
F(γ (t), γ̇ (t))dt.
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For x0, x1 ∈ M denote by Γ (x0, x1) the set of all piecewise C∞ curves γ : [0, r ] −→ M such that γ (0) = x0 and
γ (r) = x1. Define a map dF : M × M −→ [0, ∞) by

dF (x0, x1) = inf
γ∈Γ (x0,x1)

L(γ ).

Of course we have dF (x0, x1) ≥ 0, where the equality holds if and only if x0 = x1; dF (x0, x2) ≤ dF (x0, x1) +

dF (x1, x2). In general, since F is only a positive homogeneous function, dF (x0, x1) 6= dF (x1, x0), and therefore
(M, dF ) is only a non-reversible metric space.

Let π∗T M be the pull-back of the tangent bundle T M by π : T M \ {0} −→ M . Unlike the Levi-Civita connection
in Riemannian geometry, there is no unique natural connection in the Finsler case. Among these connections on
π∗T M , we choose the Chern connection whose coefficients are denoted by Γ i

jk (see [2, p. 38]). This connection is

almost g-compatible and has no torsion. Here g(x, y) = gi j (x, y)dx i
⊗dx j

= ( 1
2 F2)yi y j dx i

⊗dx j is the Riemannian
metric on the pulled-back bundle π∗T M .

The Chern connection defines the covariant derivative DV U of a vector field U ∈ χ(M) in the direction V ∈ Tp M .
Since, in general, the Chern connection coefficients Γ i

jk in natural coordinates have a directional dependence, we must
say explicitly that DV U is defined with a fixed reference vector. In particular, let σ : [0, r ] −→ M be a smooth curve
with velocity field T = T (t) = σ̇ (t). Suppose that U and W are vector fields defined along σ . We define DT U with
reference vector W as

DT U =

[
dU i

dt
+ U j T k(Γ i

jk)(σ,W )

]
∂

∂x i |σ(t).

A curve σ : [0, r ] −→ M , with velocity T = σ̇ is a Finslerian geodesic if

DT

[
T

F(T )

]
= 0, with reference vector T .

We assume that all our geodesics σ(t) have been parameterized to have constant Finslerian speed. That is, the
length F(T ) is constant. These geodesics are characterized by the equation

DT T = 0, with reference vector T .
Since T =

dσ i

dt
∂

∂x i , this equation says that

d2σ i

dt2 +
dσ j

dt

dσ k

dt
(Γ i

jk)(σ,T ) = 0.

If U, V and W are vector fields along a curve σ , which has velocity T = σ̇ , we have the derivative rule

d
dt

gW (U, V ) = gW (DT U, V ) + gW (U, DT V )

whenever DT U and DT V have reference vector W and one of the following conditions holds:

(i) U or V is proportional to W , or
(ii) W = T and σ is a geodesic.

2.2. Homogeneous Finsler spaces

Let (M, F) be a Finsler space, where F is positively homogeneous. As in the Riemannian case, we have two types
of definition of isometry on (M, F), in terms of Finsler function in the tangent space and the induced non-reversible
distance function on the base manifold M . The equivalence of these two definitions in the Finsler case is a result of
Deng and Hou [3]. They also prove that the group of isometries of a Finsler space is a Lie transformation group of the
underlying manifold which can be used to study homogeneous Finsler spaces.

Definition 2.1. A Finsler space (M, F) is called a homogeneous Finsler space if the group of isometries of (M, F),
I (M, F), acts transitively on M .

A Finsler manifold (M, F) is said to be forward geodesically complete if every geodesic γ (t), a ≤ t < b,
parameterized to have constant Finslerian speed, can be extended to a geodesic defined on a ≤ t < ∞.
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Theorem 2.2 ([9]). Every homogeneous Finsler space is forward complete.

Theorem 2.3 ([4]). Let G be a Lie group, H be a closed subgroup of G. Suppose there exists an invariant Finsler
metric on G

H . Then there exists an invariant Riemannian metric on G
H .

Let M =
G
H be a homogeneous space, where H is the isotropy subgroup at a point o ∈ M . If the linear isotropy

representation λ : H −→ GL(Mo), h −→ h∗o, is faithful, that is, injective, then G acts effectively on M . Let (M, F)

be a connected homogeneous Finsler manifold. If G is any connected transitive group of isometries of M and H is the
isotropy subgroup at a point, then M is naturally identified with the homogeneous manifold G

H . The Finsler metric F
on M can be considered as a G-invariant Finsler metric on G

H . By Theorem 2.3, there exists a G-invariant Riemannian
metric on G

H . So the linear isotropy representation is faithful and G acts effectively on G
H .

A homogeneous space G
H is called reductive if there exists a vector space decomposition g = m ⊕ h such that

Ad(H)m ⊂ m. In this case m ⊕ h is called a reductive decomposition of g. It is well known [6,7] that each Riemannian
homogeneous space is reductive. We now have the following.

Remark 2.4. Any homogeneous Finsler manifold M =
G
H is a reductive homogeneous space.

3. Homogeneous geodesics in homogeneous Finsler spaces

Let (M =
G
H , F) be a homogeneous Finsler space with a fixed origin p. Let g and h be the Lie algebra of G and

H respectively and let

g = m ⊕ h

be a reductive decomposition of the Lie algebra g. From Remark 2.4, such a decomposition always exists.
For each X ∈ g we obtain the corresponding fundamental vector field X∗ on M by means of

X∗
q =

d
dt

|t=0(exp(t X)q) ∀q ∈ M.

The canonical projection π : G −→
G
H induces an isomorphism between the subspace m and the tangent space Tp M .

Identifying g with TeG we get dπ(X) = X∗
p for each X ∈ g and hence dπ(Xm) = X∗

p.
Using this natural identification and the scalar product gX∗

p
on Tp M we obtain a scalar product gXm on m.

A vector X ∈ g − {o} will be called a geodesic vector if the curve γ (t) = exp(t X)(p) is a constant speed geodesic
of (M, F).

Let (M =
G
H , g) be a Riemannian homogeneous space, and g = m ⊕ h be a reductive decomposition. Kowalski

and Vanhecke [8] proved that X ∈ g is a geodesic vector if and only if

g([X, Y ]m, Xm) = 0 ∀Y ∈ m.

In the Finslerian case we get the following theorem. We use some ideas from [8] in our proof.

Theorem 3.1. A vector X ∈ g − {0} is geodesic vector if and only if

gXm (Xm, [X, Z ]m) = 0 ∀Z ∈ g.

Proof. Let (M, F) be a Finsler space. For any vector fields T, V, W on M , we have [2]

T gW (V, W ) = gW (DT V, W ) + gW (V, DT W ) with reference W. (1)

Similarly,

V gW (T, W ) = gW (DV T, W ) + gW (T, DV W ), (2)

WgW (V, W ) = gW (DW V, W ) + gW (V, DW W ). (3)

All covariant derivatives have W as reference vector.
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Subtracting (2) from the summation of (1) and (3) we get

gW (V, DW+T W ) + gW (W − T, DV W ) = T gW (V, W ) − V gW (T, W ) + WgW (V, W )

− gW ([T, V ], W ) − gW ([W, V ], W ),

where we have used the symmetry of the connection, i.e., DV W − DW V = [V, W ]. Setting T = W − V in the above
equation, we obtain

2gW (V, DW W ) = 2WgW (V, W ) − V gW (W, W ) − 2gW ([W, V ], W ). (4)

Let X, Z ∈ g be given and denote by X∗ and Z∗ the corresponding fundamental vector fields on M . From the above
equation we get

2gX∗(DX∗ X∗, Z∗) = 2X∗gX∗(X∗, Z∗) − Z∗gX∗(X∗, X∗) + 2gX∗([Z∗, X∗
], X∗). (5)

Recall also the formulas

Ad(exp(t X))Y = Y + t[X, Y ] + O(t2), X, Y ∈ g, (6)

k · exp(t X) · k−1
= exp(tAd(k)X), k ∈ G, X ∈ g. (7)

Define for brevity gt = exp(t X), hs = exp(s Z). Using (7) and (6), we get first, for any x ∈ M ,

Z∗

gt (x) =
d
ds

|0 hs gt (x) = (dgt )
d
ds

|0 g−1
t hs gt (x)

= (dgt )
d
ds

|0 exp(sAd(g−1
t )Z)(x)

= (dgt )[Ad(g−1
t )Z ]

∗
x

= (dgt )[Ad(exp(−t X))Z ]
∗
x

= (dgt )[Z − t[X, Z ] + O(t2)]∗x .

Similarly, we get

X∗

hs (x) = (dhs)[X − s[Z , X ] + O(s2)]∗x .

We shall also use the obvious relations

X∗

gt (x) = (dgt )X∗
x , Z∗

hs (x) = (dhs)Z∗
x .

Since gt is an isometry, dgt is a linear isometry between the spaces Tp M and Tgt (p)M , ∀p ∈ M . Therefore for any
vector fields V, W on M we have

gdgt (X∗)(dgt (V ), dgt (W )) = gX∗(V, W ). (8)

Now, we calculate

X∗
x gX∗(X∗, Z∗) =

d
dt

|0 gX∗(X∗

gt (x), Z∗

gt (x))

=
d
dt

|0 gX∗(dgt (X∗
x ), (dgt )[Z − t[X, Z ] + O(t2)]∗x )

=
d
dt

|0 gX∗(X∗
x , Z∗

x + t[X∗, Z∗
]x + O(t2))

= gX∗(X∗, [X∗, Z∗
])(x).

Further,

Z∗
x gX∗(X∗, X∗) =

d
ds

|0 gX∗(X∗
x + s[Z∗, X∗

]x + O(s2), X∗
x + s[Z∗, X∗

]x + O(s2))

= 2gX∗(X∗, [Z∗, X∗
])(x).
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Substituting into (5), we get on M

gX∗(DX∗ X∗, Z∗) = gX∗(X∗, [X∗, Z∗
]) = −gX∗(X∗, [X, Z ]

∗). (9)

Now, suppose first that X is a geodesic vector, i.e. γ (t) = exp(t X)(p) is a geodesic of F with Finslerian constant
speed. Then DX∗

gt (p)
X∗

gt (p) = 0, so in particular,

gX∗(X∗
p, [X, Z ]

∗
p) = 0.

Using the natural identification of m and Tp M we obtain

gXm (Xm, [X, Z ]m) = 0.

Letting Z be an arbitrary vector field on M , by (5) and (8) we have

2gdgt (X∗)(dgt (Z), Ddgt X∗dgt X∗) = 2(dgt X∗)gdgt (X∗)(dgt Z , dgt X∗)

− dgt (Z)gdgt (X∗)(dgt X∗, dgt X∗) + 2gdgt (X∗)([dgt Z , dgt X∗
], dgt X∗)

= 2X∗gX∗(Z , X∗) − ZgX∗(X∗, X∗) + 2gX∗([Z , X∗
], X∗)

= 2gX∗(Z , DX∗ X∗).

Consequently

gdgt (X∗)(dgt (Z), Ddgt X∗dgt X∗) = gdgt (X∗)(dgt (Z), dgt (DX∗ X∗)).

Since Z is arbitrary and gdgt (X∗)(·, ·) is an inner product, we have

Ddgt X∗dgt X∗
= dgt (DX∗ X∗). (10)

On the other hand, suppose that gX∗
p
(X∗

p, [X, Z ]
∗
p) = 0. Then

gX∗

gt (p)
(X∗, [X, Z ]

∗)(exp(t X)(p)) = gX∗

gt (p)
(dgt X∗

p, dgt [X, Z ]
∗
p)

= gX∗
p
(X∗

p, [X, Z ]
∗
p) = 0

for any Z ∈ g. Then (9) yields that

gX∗(DX∗ X∗, Z)(exp(t X)(p)) = gX∗(dgt (DX∗ X∗)p, dgt Z∗
p)

= gX∗((Ddgt X∗dgt X∗)p, dgt Z∗
p)

= gX∗(DX∗

gt (p)
X∗

gt (p), dgt Z∗
p) = 0.

Then this yields that exp(t X)(p) is a geodesic with constant speed. �

Corollary 3.2. A vector X ∈ g − {0} is a geodesic vector if and only if

gXm (Xm, [X, Y ]m) = 0 for all Y ∈ m. (11)

Proof. Since F is G-invariant, we have

F(Ad(h)W ) = F(W ) ∀h ∈ H, W ∈ m.

Therefore, ∀y 6= 0, u, v ∈ m, x ∈ h, t, r, s ∈ R, we have

F2(Ad(exp(t x)))(y + ru + sv) = F2(y + ru + sv).

By definition,

gy(u, v) =
1
2

∂2

∂r∂s
F2(y + ru + sv)|r=s=0.

Thus

gy(u, v) =
1
2

∂2

∂r∂s
F2(Ad(exp(t x))(y + ru + sv))|r=s=0.
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Now for w ∈ m, from (6) we have

Ad(exp(t x))w = w + t[x, w] + O(t2).

Therefore

gy(u, v) =
1
2

∂2

∂r∂s
F2(y + ru + sv + t[x, y + ru + sv] + O(t2))|r=s=0.

Taking the derivative with respect to t at t = 0, we get

0 = gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v), (12)

where Cy is the Cartan tensor of F at y. It follows from the homogeneity of F that Cy(y, v, w) = 0. So we have

gy([x, y], y) = 0.

For any Z ∈ g, where Z = Y + A with Y ∈ m, A ∈ h, we obtain

gXm ([X, Z ]m, Xm) = gXm ([X, Y ]m, Xm) + gXm ([X, A]m, Xm).

Here, the second term is equal to gXm ([Xm, A], Xm) = 0. Hence (11) implies that X is a geodesic vector. �

Corollary 3.3. If X ∈ g − {0} is a geodesic vector then Ad(h)X and λX are geodesic vectors for all h ∈ H, λ ∈ R.

Proof. It is evident from the fact that

gy(u, v) = gAd(h)y(Ad(h)u, Ad(h)v) ∀h ∈ H. �

In the following theorem, we consider bi-invariant Finsler metrics on Lie groups. We show that the geodesics of
G starting at the identity element are the one-parameter subgroup of G. Let G be a connected Lie group. Deng and
Hou [4] prove that there exists a bi-invariant Finsler metric on G if and only if there exists a Minkowski norm F on g
such that

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v) = 0

∀y ∈ g − {0}, x, u, v ∈ g. So we have the following:

Theorem 3.4. Let G be a connected Lie group furnished with a bi-invariant Finsler metric F. Then each vector of g
is a geodesic vector.

Here we study the existence of homogeneous geodesics in homogeneous Finsler spaces. The problem of the
existence of homogeneous geodesics in homogeneous Finsler manifolds seems to be an interesting one. Concerning
the existence of homogeneous geodesics in a general homogeneous Riemannian manifold, we have, at first, a result
due to Kajzer who proved that a Lie group endowed with a left-invariant metric admits at least one homogeneous
geodesic [5]. More recently Kowalski and Szenthe extended this result to all homogeneous Riemannian manifolds [7].
Homogeneous geodesics of left-invariant Lagrangian on Lie groups were studied by Szenthe [14]. The following result
is due to Szenthe [14].

Theorem 3.5. Let G be a compact connected Lie group and L : T G −→ R a left-invariant Lagrangian which is
a first integral of its Lagrangian field. Then L has at least one homogeneous geodesic. If, in particular, G is also
semi-simple and of rank ≥ 2 then L has infinitely many homogeneous geodesics.

Let (M, F) be a Finsler space. For every smooth parameterized curve γ : [0, 1] −→ M , the length of γ is given
by

L(γ ) =

∫ 1

0
F(γ (t), γ̇ (t))dt. (13)
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A geodesic of the Finsler space (M, F) is an extremal curve of (13). This is in fact a solution of the Euler–Lagrange
equations

d
dt

(
∂ F

∂ ẋ i

)
−

∂ F

∂x i = 0, ẋ i
=

dx i

dt
(14)

where (x i (t)) is a local coordinate expression of γ . This system is equivalent to

d2x i

dt2 + 2Gi
(

x,
dx

dt

)
= 0 (15)

where

G j (y) =
1
4

g jl(y)

[
2
∂gsl

∂xk (y) −
∂gsk

∂x l (y)

]
ys yk .

Let

G = yi ∂

∂x i − 2Gi (x, y)
∂

∂yi .

G is a vector field on T M −{0}. It is easy to see that x(t) is a solution of (15) if and only if its lift ẋ(t) = (x(t), dx
dt (t))

is an integral curve of G in T M − {0}. G is called the geodesic spray. The following lemma shows that any Finsler
metric F is a first integral of its geodesic spray.

Lemma 3.6 ([11]). For any Finsler metric F on a manifold, G(F) = 0.

So from Theorem 3.5 the following result follows:

Theorem 3.7. Let G be a compact connected Lie group and F a left-invariant Finsler metric. Then F has at least
one homogeneous geodesic. If, in particular, G is also semi-simple and of rank ≥ 2 then F has infinitely many
homogeneous geodesics.

3.1. Naturally reductive homogeneous Finsler space

The scheme is to treat the geometry of coset manifolds G
H as a generalization of the geometry of Lie group G

(since G
H reduces to G when H = {e}). From this viewpoint, the isomorphism m ' To(

G
H ) generalizes the canonical

isomorphism g ' TeG, and a G-invariant Riemannian metric on G
H generalizes a left-invariant metric on G. The

notion of the bi-invariant Riemannian metric on G generalizes as follows.

Definition 3.8. A Riemannian homogeneous space ( G
H , g) is said to be naturally reductive if there exists a reductive

decomposition g = m + h of g satisfying the condition

〈[X, Y ]m, Z〉 + 〈Y, [X, Z ]m〉 = 0 (16)

for all X, Y, Z ∈ m.

where 〈, 〉 denotes the inner product on m induced by the metric g.
In fact, when H = {e}, and hence m = g, the above condition is just the condition

〈[X, Y ], Z〉 + 〈Y, [X, Z ]〉 = 0, (17)

for a bi-invariant Riemannian metric on G. In [4] the authors introduced the notion of a Minkowski Lie algebra:

Definition 3.9. Let g be a real Lie algebra, F be a Minkowski norm on g. Then {g, F} is called a Minkowski Lie
algebra if the following condition is satisfied:

gy([x, u], v) + gy(u, [x, v]) + 2Cy([x, y], u, v) = 0 (18)

where y ∈ g − {0}, x, u, v ∈ g.
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The following was shown:

Theorem 3.10. Let G be a connected Lie group. Then there exists a bi-invariant Finsler metric on G if and only if
there exists a Minkowski norm F on g such that {g, F} is a Minkowski Lie algebra.

It is easy to see that the notion of the Minkowski Lie algebra is the natural generalization of (17). Now we define the
notion of a naturally reductive homogeneous Finsler space.

Definition 3.11. A homogeneous manifold G
H with an invariant Finsler metric F is called naturally reductive if there

exists an Ad(H)-invariant decomposition g = h + m such that

gy([x, u]m, v) + gy(u, [x, v]m) + 2Cy([x, y]m, u, v) = 0

where y 6= 0, x, u, v ∈ m.

Evidently this definition is the natural generalization of (16). On the other hand, when H = {e}, and hence m = g,
this formula is just (18). The following theorem is a consequence of Theorem 3.1 and Definition 3.11.

Theorem 3.12. Let ( G
H , F) be a naturally reductive homogeneous Finsler space. Then each geodesic of ( G

H , F) is an
orbit of a one-parameter group of isometries {exp(t X)}, X ∈ g.

4. Homogeneous geodesics of Randers spaces

In this section, we consider homogeneous geodesics in a homogeneous Randers space. Randers metrics were
introduced by Randers in 1941 [10] in the context of general relativity. They are Finsler spaces built from

(i) a Riemannian metric ã = ãi j dx i
⊗ dx j , and

(ii) a 1-form b̃ = b̃i dx i ,

both living globally on the smooth n-dimensional manifold M . The Finsler function of a Randers metric has the simple
form F = α + β, where

α(x, y) =

√
ãi j (x)yi y j , β(x, y) = b̃i (x)yi .

Generic Randers metrics are only positively homogeneous. No Randers metric can satisfy absolute homogeneity
F(x, cy) = |c|F(x, y) unless b̃ = 0, in which case it is Riemannian. Also, in order for F to be positive and strongly
convex on T M \ {0}, it is necessary and sufficient to have

‖b̃‖ =

√
b̃i b̃i < 1, where b̃i

= ãi j b̃ j .

See [2]. Strong convexity means that the fundamental tensor gi j is positive definite. The Riemannian metric
ã = ãi j dx i

⊗dx j induces the musical bijections between 1-forms and vector fields on M , namely [ : Tx M −→ T ∗
x M

given by y −→ ãx (y, ◦) and its inverse ] : T ∗
x M −→ Tx M . In the local coordinates we have

(y[)i = ãi j y j (θ])i
= ãi jθ j y ∈ Tx M θ ∈ T ∗

x M.

Now the vector field corresponding to the 1-form b̃ will be denoted by b̃]; obviously we have ‖b̃‖ = ‖b̃]
‖ and

β(x, y) = (̃b])[(y) = ãx (̃b
], y).

Thus a Randers metric F with Riemannian metric ã = ãi j dx i
⊗ dx j and 1-form b̃ can be shown by

F(x, y) =
√

ãx (y, y) + ãx (̃b
], y) x ∈ M, y ∈ Tx M,

where ãx (̃b], b̃]) < 1, ∀x ∈ M .

Theorem 4.1. Let (M, F) be a homogeneous Randers space with F defined by the Riemannian metric ã and the
vector field X. Then X is a geodesic vector of (M, ã) if and only if X is a geodesic vector of (M, F).
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Proof. Let F(p, y) =
√

ãp(y, y) + ãp(X, y).
Now for s, t ∈ R

F2(y + su + tv) = ã(y + su + tv, y + su + tv) + ã2(X, y + su + tv)

+ 2
√

ã(y + su + tv, y + su + tv)̃a(X, y + su + tv).

By definition

gy(u, v) =
1
2

∂2

∂r∂s
F2(y + ru + sv)|r=s=0.

So by a direct computation we get

gy(u, v) = ã(u, v) + ã(X, u)̃a(X, v) +
ã(u, v)̃a(X, y)

√
ã(y, y)

−
ã(v, y)̃a(u, y)̃a(X, y)

ã(y, y)
√

ã(y, y)

+
ã(X, v)̃a(u, y)

√
ã(y, y)

+
ã(X, u)̃a(v, y)

√
ã(y, y)

. (19)

So for all Z ∈ m we have

gX (X, [X, Z ]m) = ã(X, [X, Z ]m) + ã(X, X )̃a(X, [X, Z ]m) + 2
√

ã(X, X )̃a(X, [X, Z ]m)

= ã(X, [X, Z ]m)(1 +

√
ã(X, X) + F(X)).

Thus gX (X, [X, Z ]m) = 0 if and only if ã(X, [X, Z ]m) = 0. �

Theorem 4.2. Let (M, F) be a homogeneous Randers space with F defined by the Riemannian metric ã and the
vector field X. Let y ∈ g be a vector for which ã(X, [y, z]m) = 0 for all z ∈ m. Then y is a geodesic vector of (M, F)

if and only if y is a geodesic vector of (M, ã).

Proof. According to the above formula for gy(u, v), we have

gym (ym, [y, z]m) = ã(ym, [y, z]m) + ã(X, ym )̃a(X, [y, z]m)

+
ã(ym, [y, z]m )̃a(X, ym)

√
ã(ym, ym)

+ ã(X, [y, z]m)
√

ã(ym, ym)

= ã(ym, [y, z]m)

(
1 +

ã(X, ym)
√

ã(ym, ym)

)
+ ã(X, [y, z]m)

(̃
a(X, ym) +

√
ã(ym, ym)

)
.

So we have

gym (ym, [y, z]m) = ã(ym, [y, z]m)

(
F(ym)

√
ã(ym, ym)

)
+ ã(X, [y, z]m)F(ym).

This concludes the proof. �

Let (M, F) be a Finsler space. Then (M, F) is called a Berwald space if the Chern connection coefficients Γ k
i j (x, y)

in natural coordinate systems have no dependence on the vector y, or in other words, if the Chern connection defines
a linear connection directly on the underlying manifold.

Theorem 4.3. Let (M, F) be a homogeneous Randers space with F defined by the Riemannian metric ã =

ãi j dx i
⊗ dx j and the vector field X which is of Berwald type. Then (M, F) is naturally reductive if and only if

the underlying Riemannian metric (M, ã) is naturally reductive.

Proof. Let (M, ã) be naturally reductive. We show that for all 0 6= y, z, u, v ∈ m

gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v) = 0.

Since F is of Berwald type, (M, F) and (M, ã) have the same connection. So according to the relation

gym (ym, [y, z]m) = ã(ym, [y, z]m)

(
F(ym)

√
ã(ym, ym)

)
+ ã(X, [y, z]m)F(ym),
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for all 0 6= y ∈ m we have

ã(X, [y, z]m) = 0 ∀z ∈ m.

From (19) we get

gy([z, u]m, v) = ã([z, u]m, v)

(
1 +

ã(X, y)
√

ã(y, y)

)
+ ã([z, u]m, y)

(
ã(X, v)

√
ã(y, y)

−
ã(v, y)̃a(X, y)

ã(y, y)
√

ã(y, y)

)
gy(u, [z, v]m) = ã(u, [z, v]m)

(
1 +

ã(X, y)
√

ã(y, y)

)
+ ã([z, v]m, y)

(
ã(X, u)
√

ã(y, y)
−

ã(u, y)̃a(X, y)

ã(y, y)
√

ã(y, y)

)
.

By definition

Cy(z, u, v) =
1
2

d
dt

[̃ay+tv(z, u)]|t=0.

So by a direct computation we get

2Cy(z, u, v) =
ã(z, u)̃a(X, v)̃a(y, y) − ã(y, v)̃a(z, u)̃a(X, y)

ã(y, y)
√

ã(y, y)

+
ã(X, u)̃a(z, v)̃a(y, y) − ã(y, v)̃a(X, u)̃a(z, y)

ã(y, y)
√

ã(y, y)

+
ã(X, z)̃a(u, v)̃a(y, y) − ã(y, v)̃a(X, z)̃a(u, z)

ã(y, y)
√

ã(y, y)

−
ã(x, y)̃a(u, y)̃a(z, v) + ã(x, y)̃a(u, v)̃a(z, y) + ã(x, v)̃a(u, y)̃a(z, y)

ã(y, y)
√

ã(y, y)

+
3̃a(y, v)̃a(X, y)̃a(u, y)̃a(z, y)

ã(y, y)2
√

ã(y, y)
.

So we have

Cy([z, y]m, u, v) = ã([z, y]m, u)

(
ã(X, v)

√
ã(y, y)

−
ã(y, v)̃a(X, y)

ã(y, y)
√

ã(y, y)

)
+ ã([z, y]m, v)

(
ã(X, u)
√

ã(y, y)
−

ã(X, y)̃a(u, y)

ã(y, y)
√

ã(y, y)

)
.

Therefore

gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v) = (̃a([z, u]m, v) + ã(u, [z, v]m))

(
1 +

ã(X, y)
√

ã(y, y)

)
+ (̃a([z, u]m, y) + ã([z, y]m, u))

(
ã(X, v)

ã(y, y)
−

ã(v, y)̃a(X, y)

ã(y, y)
√

ã(y, y)

)
+ (̃a([z, v]m, y) + ã([z, y]m, v))

(
ã(X, u)
√

ã(y, y)
−

ã(X, y)̃a(u, y)

ã(y, y)
√

ã(y, y)

)
.

Thus

gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v) = 0

for all y 6= 0, u, v, z ∈ m.
Conversely let (M, F) be naturally reductive, i.e. for all y 6= 0, u, v, z ∈ m,

gy([z, u]m, v) + gy(u, [z, v]m) + 2Cy([z, y]m, u, v) = 0.

So

gy([y, u]m, v) + gy(u, [y, v]m) = 0.

(M, F) and (M, ã) have the same geodesics and for all 0 6= y ∈ m, y is a geodesic vector, so for all y ∈ m we have

ã(X, [y, z]m) = 0 ∀z ∈ m.
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Therefore

gy([y, u]m, v) = ã([y, u]m, v)

(
1 +

ã(X, y)
√

ã(y, y)

)
,

gy(u, [y, v]m) = ã(u, [y, v]m)

(
1 +

ã(X, y)
√

ã(y, y)

)
.

So we have

gy([y, u]m, v) + gy(u, [y, v]m) = (̃a([y, u]m, v) + ã(u, [y, v]m))

(
1 +

ã(X, y)
√

ã(y, y)

)
= 0.

We easily see that
(

1 +
ã(X,y)
√

ã(y,y)

)
6= 0. Thus

ã([y, u]m, v) + ã(u, [y, v]m) = 0. �

5. Some curvature properties

The S-curvature is one of most important non-Riemannian quantities in Finsler geometry which vanishes for
Riemannian metrics. The S-curvature has been introduced in [12]. In this section, we discuss the relationship between
the homogeneous geodesics and S-curvature.

Let F be a Finsler metric on a manifold M . Let {ei }
n
i=1 be a basis for Tx M and {ωi }

n
i=1 the dual basis for T ∗

x M .
Denote by dµx = σ(x)ω1

∧ · · · ∧ ωn the Busemann volume form at x , where

σ(x) =
Vol(Bn)

Vol{(yi ) ∈ Rn, F(yi ei ) < 1}
,

where Bn denotes the unit ball in Rn and Vol denotes the Euclidean measure on Rn . For each y ∈ Tx M − {0}, define

τ(x, y) = Ln

[√
det gy(ei , e j )

σ (x)

]
.

The scalar function τ : T M \ {0} −→ R is called the distortion. To measure the rates of change of the distortion along
geodesics, we define

S(x, y) =
d
dt

[τ(c(t), ċ(t))]t=0

where c(t) is the geodesic with ċ(0) = y.
The scalar function S : T M \ {0} −→ R is called the S-curvature [11,12].

Theorem 5.1. Let X be a geodesic vector. Then S(Xm) = 0 for the Busemann volume form.

Proof. Let γ (t) = exp(t X)(p) be the homogeneous geodesic corresponding to X . Define gt = exp(t X); obviously
we have

X∗

gt (x) = (dgt )(X∗
x ).

Take an arbitrary basis {ei }
n
i=1 for Tx M . We obtain a frame along γ (t),

ei (t) = (dgt )ei i = 1, . . . , n.

Let dµ denote the Busemann volume form of F . Put

dµ|c(t) = σ(t)ω1(t) ∧ · · · ∧ ωn(t),

where {ωi (t)} is the basis for T ∗

γ (t)M which is dual to {ei (t)}n
i=1.

σ(t) =
Vol(Bn)

Vol{(yi ) ∈ Rn, F(yi ei (t)) < 1}
.
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Since gt is an isometry we have F(yi ei (t)) = F(yi ei ) and by the relation (8) we know that

gγ̇ (t)(ei (t), e j (t)) = gγ̇ (0)(ei , e j ).

Thus

det
[
gγ̇ (t)(ei (t), e j (t))] = det[gγ̇ (0)(ei , e j )

]
,

{(yi ) ∈ Rn, F(yi ei (t)) < 1} = {(yi ) ∈ Rn, F(yi ei ) < 1}.

This implies that

τ(γ (t), γ̇ (t)) = Ln

[√
det[gγ̇ (t)(ei (t), e j (t))]

σ(t)

]
is constant, so S(γ (t), γ̇ (t)) = 0. In particular, at t = 0, S(X∗

p) = 0. �

Now like for Riemannian spaces we define the notion of the geodesic orbit (g.o.) space for Finsler spaces.

Definition 5.2. A homogeneous Finsler space (M, F) is said to be geodesic orbit (g.o.) space if every geodesic in M
is an orbit of a one-parameter group of isometries, i.e. there exists a transitive group G of isometries such that every
geodesic in M is of the form exp(t X)p with X ∈ g, p ∈ M .

Corollary 5.3. Let (M, F) be a g.o. Finsler space. Then the S-curvature S = 0 for the Busemann volume form.

Proof. Let 0 6= X ∈ Tx M be an arbitrary vector. Let γ be the geodesic with γ̇ (0) = X . Since (M, F) is a g.o. we can
write

γ (t) = exp(t X)γ (0).

According to Theorem 5.1, S(γ (t), γ̇ (t)) = 0 and so S(x, X) = 0. �
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